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Abstract

A mathematical model describing both the hindered settling and the consolidation of suspensions with particles of
different sizes and densities forming compressible sediments is presented. The specific new element is a centrifugal
configuration, which gives rise to a non-constant body force. Within a range of angular velocities, the model can be
reduced to one (radial) space dimension. The result is a system of second-order strongly degenerate parabolic—
hyperbolic convection—diffusion equations. For the special subcase of suspensions of rigid spheres, which do not form
compressible sediments and for which the effective solid stress can be assumed to vanish, these equations form a first-
order system of conservation laws. A type analysis shows that these equations include hyperbolic, hyperbolic—parabolic,
and hyperbolic—elliptic systems, depending on the sizes and densities of the solid particles. A numerical high-resolution
central difference scheme for the hyperbolic and hyperbolic—parabolic models is applied to solve the model numerically,
and thereby to simulate centrifugation of two polydisperse suspensions.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical models for the sedimentation and centrifugation of suspensions are important to a variety
of applications such as solid-liquid separation in mineral processing and wastewater treatment, classifi-
cation, fluidization, blood sedimentation and volcanology. In many situations it is necessary to distinguish
several particle species, which are assumed to belong to a finite number N of species having sizes
dy > d, > --- >dy and densities ¢y, ..., gy, where we assume that d; # d; or ¢, # ¢; for i # j, 1 <i, j<N.
These suspensions are called polydisperse, and their characteristic property is particle segregation or dif-
ferential sedimentation, which results in areas of different composition.

A particularly interesting recent application is provided by a recent series of papers by Biesheuvel and
co-workers (Biesheuvel et al., 1998, 2001; Biesheuvel and Verweij, 2000), who show that models for
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polydisperse sedimentation covering the full range from dilute suspensions to concentrated sediments are
useful in models of manufacturing of solid products (casts) formed of small particles. In this paper, we
develop, in part analyze, and simulate models which indeed cover the full range of concentrations.

In the sequel, the present paper is outlined and put in the proper perspective of the literature. In Section 2
we derive a mathematical model for the separation of polydisperse suspensions of rigid spheres under both
a centrifugal and a gravitational body force. The local composition of such a mixture is described by the
vector @ := (¢,,...,¢py)" of concentrations, where ¢, is the local volume concentration of particle species i,
i=1,...,N, having size d; and density ¢;. The modeling starts from the usual mass and linear momentum
balance equations for the N solids species (each regarded as one phase) and the fluid. The material
properties of the suspension are introduced by constitutive assumptions on the solid and fluid stress tensors
and the solid—fluid interaction forces. In particular, the solid and fluid phase pressures are expressed in
terms of the effective solid stress ¢, and the pore pressure. Specifying the solid—fluid interaction force for
each species and finally performing a dimensional analysis, which permits neglecting several terms from the
linear momentum balance equations, we obtain the solid—fluid relative velocity (or slip velocity) of each
species as a function of @ and V@, which yields the fluxes of the continuity equations. The final (spatially
multidimensional) model equations form a strongly degenerate system of N convection—diffusion equations
for ¢, ..., ¢, coupled to the divergence-free condition of the volume-average mixture velocity and a three-
component equation for the motion of the mixture.

The multidimensional model is further restricted to one space dimension. In this case, the mixture ve-
locity is zero for settling in a closed vessel. Wall effects may be neglected since the particles are small against
the vessel diameter. For a centrifugal system, the reduction to one space dimension is admissible only if
both the gravitational body force and the Coriolis force, introducing an azimuthal velocity component, are
negligible. We consider either a rotating tube (Fig. 1(a)) or a basket centrifuge (Fig. 1(b)), and distinguish
between these cases by a parameter ¢ taking the values zero and one in the tube and basket cases, re-
spectively.

Under these simplifications, only a system of N second-order strongly degenerate convection—diffusion
equations for the N solids concentrations ¢,, ..., ¢y as functions of height z or radius » and time ¢ have to
be solved if sediment compressibility is taken into account, and these equations further reduce to a first-
order system of conservation laws in the absence of compressibility, that is, when the particles are rigid
spheres. These equations are equipped with an initial concentration distribution and boundary conditions
to form a solvable mathematical model. Since the result of our derivation is similar to models proposed by
Masliyah (1979) and Lockett and Bassoon (1979), we refer to these equations as the MLB model, as op-
posed for example to the Davis and Gecol (1994) or Patwardhan and Tien (1985) models.

Fig. 1. Centrifugal separation of a bidisperse suspension of light (O) and heavy (@) particles (a) in a rotating tube (¢ = 0) and (b) in a
basket centrifuge (¢ = 1).
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The resulting spatially one-dimensional systems of convection—diffusion equations have some interesting
mathematical properties. It is not trivial to determine the type of these equations in dependence of the
number of species N, their sizes and densities, and the local concentration vector @. The basic results for the
MLB model are summarized in Section 3. It turns out that the MLB model is in general non-hyperbolic or
(for N = 2) hyperbolic-elliptic, that is, of mixed type for suspensions with particles of different densities,
but according to Berres et al. (2003a) it is always hyperbolic for suspensions of equal-density spheres with
arbitrary size distributions. Only in the hyperbolic case it is ensured that all solution information travels at
finite speed. The condition for loss of hyperbolicity is equivalent to an instability condition predicting the
occurrence of horizontal structures like ‘fingers’, ‘blobs’ and ‘columns’ during the separation of a poly-
disperse suspension. This instability condition was first derived by Batchelor and Janse van Rensburg
(1986) for N = 2 and recently extended to arbitrary N, and identified as a condition for the system to be of
mixed type, by Biirger et al. (2000b, 2002). Such mixed systems appear in many applications (Fitt, 1996),
but the interesting point in ours is that such ‘fingers’, ‘blobs’ and ‘columns’ have indeed been observed and
that predictions of their occurrence by means of Batchelor and Janse van Rensburg’s criterion are fairly
accurate. The strict hyperbolicity result by Berres et al. (2003a) is consistent with the lack of any obser-
vation of instability phenomena for equal-density particles.

We employ the high-resolution central difference scheme by Kurganov and Tadmor (2000) to simulate
centrifugal separation of polydisperse suspensions with compression. For additional material on these
schemes we refer to Tadmor (1998). A full description of the scheme in the application to polydisperse
gravity sedimentation of ideal suspensions consisting of rigid spheres, which is described by first-order
systems of conservation laws, is given by Bilirger et al. (2001). The Kurganov-Tadmor scheme is a re-
finement of the essentially non-oscillatory central difference scheme by Nessyahu and Tadmor (1990) used
in Biirger et al. (2000a). Kurganov and Tadmor (2000) also propose an extension of their scheme to
strongly degenerate parabolic-hyperbolic systems. The application of that extension to the ‘gravity’ initial-
boundary value problem formulated in Section 2 is described in full detail by Berres et al. (2003a). Only
some minor modifications are needed in order to make that scheme work also for the ‘centrifugal’ initial-
boundary value problem. For sake of brevity, we state in Section 4 only those steps of the scheme that differ
from the description by Berres et al. (2003a).

Section 5 illustrates the mathematical model by numerical simulations. Simulations of gravity sedi-
mentation of polydisperse suspensions of rigid spheres (not forming compressible sediments) based on
numerical solution of a first-order system have been presented by several authors (Lee, 1989; Concha et al.,
1992; Zeng and Lowe, 1992; Flotats, 1995; Biirger et al., 2000a, 2001; Berres et al., 2003b; Xue and Sun,
2003). The effect of compressible sediment for polydisperse gravity settling has been considered by Shih
et al. (1986), Stamatakis and Tien (1992) and Berres et al. (2003a). In view of all these published results and
since our novel contribution is the extension of the polydisperse sedimentation model to centrifugal con-
figurations, the simulations presented in Section 5 are limited to the centrifugal case.

A brief concluding discussion of the model is given in Section 6.

2. Derivation of the mathematical model
2.1. Mass and linear momentum balances

The local mass balance equations of the solid species and of the fluid can be written as

OV G =0, =1, -
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0
v - =0, (22)
where vi,...,vy and v; are the phase velocities of the solid species and the fluid, respectively, and
¢ = ¢, + -+ ¢, is the total volumetric solids concentration. Defining the volume-average velocity of the
mixture q := (1 — ¢)ve + ¢;v; + - + ¢, vy and the relative velocities or slip velocities u, :=v; — v for
i=1,...,N, we obtain

¢ivi:¢i(ui+q_(¢lul+"'+¢NUN))5 i=1,...,N, (23)
such that Eq. (2.1) can be rewritten in terms of q and uy,...,uy as

00

OV (Bt b= B+ b)) =0, = 1N, 4
The sum of all equations in (2.1) and (2.2) produces the simple mass balance of the mixture,

V-q=0. (2.5)

The momentum balance equations for the NV solid species and the fluid are
DV,’

0,9 Dr :V'Ti+gl¢ibi+mf+mf, i=1,...,N, (2.6)

Dv; f f
ol = ¢) 57 = V- Tr +r(1 = ¢)by — (m{ + -+ m). 2.7)
Here g, is the mass density of the fluid, T; denotes the stress tensor of particle species i, i = 1,...,N, Ty that

of the fluid, b; and b are the body forces acting on solids species i and on the fluid, respectively, m’ and m;,
are the interaction forces per unit volume between solid species i and the fluid and between the solid species
i and j, respectively, mj := m, + - -- + mj, is the particle—particle interaction term of species i, and we use
the standard notation Dv/Ds := 0v/0t + (v- V)v.

2.2. Solid and fluid stress tensors

We assume that the stress tensors of the solid and fluid phases take the respective forms T, = —p,I + T}
fori=1,...,N and T; = —p;I + TF, where p; denotes the phase pressure of particle species 7, p that of the
fluid, I denotes the identity tensor, and TIE and Tt]f: are the extra (or viscous) stress tensors of particle species
i and the fluid, respectively. However, viscous effects due to the motion of the mixture are not considered to
be dominant and we therefore assign all viscous effects to the fluid extra stress tensor. Thus, we assume that
vl and v§ < vi are characteristic viscosities associated with the fluid and the solid species, respectively. These
quantities are introduced here to provide justification for neglecting the viscous stress tensors as a conse-
quence of the dimensional analysis.

2.3. Partial pressures, pore pressures and effective solids stress

The phase pressures py,...,py and p; are theoretical variables, which cannot be measured experimen-
tally. As in the studies by Concha et al. (1996), Berres et al. (2003a) and Biirger et al. (2000b, 2002), they are
expressed in terms of the pore pressure p and the effective solids stress g., which can be measured and
therefore are experimental variables. In the monodisperse case, o, is given by a constitutive equation of the
type ge = g.(¢p). We could assume here that g, is given as a function of the local composition of the
mixture, o. = g.(®). However, as noted by Stamatakis and Tien (1992), no suitable general relationship of
this type for polydisperse suspensions has been derived theoretically or empirically so far. Instead, we
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follow existing studies (Shih et al., 1986; Massoudi et al., 1992; Stamatakis and Tien, 1992) and express c,
as in the monodisperse case, simply as a function of the local porosity e =1 — (¢p; + -+ ¢py) =1 — ¢ or
equivalently, of the cumulative solids concentration ¢ only. The generic assumptions on g, are

=0 for ¢< ¢ca / L d63(¢) =0 for¢< ¢C’
Ge(d)){ >0 for g >, 0T d¢ { >0 for ¢ > ¢, (2.8)

where ¢, is the critical concentration at which the solid particles touch each other. Very frequently the
following power law equation is used (Tiller and Leu, 1980):

0 for ¢ < ¢
s 3 2.9
(@) {00((¢/¢c)k —1) for ¢ > ¢.. (2.9)
The relationship between the theoretical pressures py,...,py and p; and the experimental variables p and

o.(¢) is established in full detail by Berres et al. (2003a). We briefly sketch the main arguments here.

The pore pressure p is defined within the fluid filling the interstices of the solids, while the partial fluid
pressure py is defined in the fluid component occupying the whole volume of the mixture. This assumption
leads to the equation py = (1 — ¢)p. Moreover, the total stress of the mixture p, can be written in two
different ways as py=p; +---+py +pr = p + 0.(¢p). We assume that for each solids species its surface
cross-sectional area fraction equals its local volume fraction ¢, (a formal justification for this assumption is
given by Biirger et al., 2002). This suggests relating py,...,py to p and a.(¢) by

o

P;:$(¢p+de(¢)), i=1,...,N. (2.10)

2.4. Body force, solid—fluid and particle—particle interaction forces

So far the derivation of the model equations has followed that of the gravitational sedimentation—
consolidation model by Berres et al. (2003a). We here extend this model to centrifugation by assuming that

the body forces by, ..., by and by take the respective forms
bj=-gk—-oxoxr—2wxv, i=1,...,N, (2.11)
bf=—gk—oxoxr—2mx v, (2.12)

where @ = wc is the angular velocity of the rotating system, w is the angular speed, ¢ (with ||c|| = 1) is the
unit vector of its axis of rotation and r is the radius vector of the system. In each of Egs. (2.11) and (2.12),
the first term denotes the gravitational force and the second and third term represent the inertial forces
originating from the centripetal and Coriolis forces, which are both product of the moving frame of ref-
erence. The body forces by, ..., by and by can be decomposed into two parts, a conservative force V(¥ + Q)
with the potentials ¥ := —g-r=—gk-r=g-z and Q:= —(1/2)(ow x 1) - (0 x 1) = —(1/2)w*?, and the
non-conservative parts —2w X v;, i = 1,...,N and —2m X v, so that by,...,by and b; can be written as
b;=-V(P+Q)—20xv,fori=1,...,Nand by = —-V(¥ + Q) — 20 X v;.

The ratio between the representative centrifugal and gravity components of by, ..., by and by is expressed
by the Froude number of the system (not of the flow) defined by # := w’R/g, where R is a typical distance
to the axis of rotation (for example, the outer radius of the container). We are here mainly interested in the
limiting cases # = 0 (gravity settling) and # = oo (for a centrifugally dominated configuration).

The interaction force between the different solid particle species described by the term m? =
m;, + --- +m;, could be specified by the formula due to Nakamura and Capes (1976):
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s :g Qi@j¢i¢j(di+dj)2
=2 0 + ol

i

||Vi_vj||(vi _Vj)7 Lj=1,...,N, i #],

where the parameter ¢, accounts for non-head-on-collisions (Shih et al., 1986) and its value depends on
whether these are plastic or elastic. Typical values of ¢, vary between zero and five (Nakamura and Capes,
1976; Arastoopour et al., 1982), and numerical simulations have not turned out to be sensitive to ¢,.
However, there is experimental and theoretical evidence that m; can be neglected at the very low Reynolds
numbers considered here, see Biirger et al. (2002) for details. As in previous papers, we assume that the
solid-fluid interaction term m! corresponding to species i is given by m' = o;(®)w; + V¢, fori=1,...,N,
where o;(®) denotes the resistance coefficient related to the transfer of momentum between the fluid and
particle species i. Considering the system at equilibrium, that is assuming vi =0, v = --- =vy =0, and
that the pore pressure equals the hydrostatic pressure, i.e. Vp = g;(—gk + (w?/2)r), we may conclude that
B=p.

Inserting all assumptions into the linear momentum balance equations (2.6) and (2.7), we obtain the
balance equations

Dy; .
Qi(biﬁ‘; = 0,¢:(—gk + wzr) —20;,p;00¢ X ¥; + V- TE — ¢;Vp+ o;(P)u; + m;
—V(Ziae(qb)), i=1,...,N, (2.13)
) 1 Dv; 1 .
Vp = oi(—gk + o’r) — 20;m¢ X v¢ m(m(@)ul + 4oy (Puy) — gfﬁ+mv N
(2.14)

2.5. Dimensional analysis

Considerable simplification of the linear momentum balance equations (2.13) and (2.14) can be achieved
by an order-of-magnitude study or dimensional analysis. We assume that characteristic quantities of our
system are a typical length Ly, a representative particle size d, a typical velocity Uy, a reference scalar
angular velocity wy and a kinematic viscosity vo. Moreover, we refer all densities to that of the fluid, ¢, and
choose #y = Ly/U, as a time scale for dimensionless time derivatives. Introducing the characteristic pa-
rameters into (2.13) and (2.14) and defining the Froude number of the flow, Fr:= U /(gLo), the Rossby
number Ro := Uy/(woLy) and the sedimentation Reynolds number Re := ULy /vy, we get the following
equations in terms of the dimensionless variables, where a star denotes the dimensionless version of each
previously introduced quantity:

Dv; 2 Fr d vy Fr Exs
* I * _ V7778 * * _ * R * * ___v_ *. _ X * 3
Qi(biFrDt*_Qi(f)i( k+7(0")7T) 2Qi¢lRowcxvl+L0 v(f) Rev (Tf) &»;V'p
* * L S\ * * (tbi * .
+ o (P)u; +3Fr(m;) -V Eae(qﬁ) , i=1,...,N, (2.15)
* s *\2 % Fr * * 1 * * * * DV*
Vp :—k—|—</"(a))r —2R700JCXVf—m(fxl(@)ul+«~.—|—OCN(¢)MN)—FrDt::
1 dFr
- — —V*-(TH)". 2.1
iR (2.16)
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Typical values of the constants involved are g = 10 m/s? (acceleration of gravity), Ly = 0.1 m (sedimen-
tation space in a centrifuge), Uy = 10~* m/s (assumed settling velocity of the largest particle in unbounded,
quiescent fluid) and vy = 107 m?/s (kinematic viscosity of water). These values imply Fr = 10~% and
Fr/Re = 1077. The value of w, and thus those of # and Ro will be specified later.

On the basis of these values and the standard assumption that the starred terms are of the order of
magnitude @(1), we may neglect the viscous and convective acceleration terms in the linear momentum
balances, which bear the coefficients Fr and Fr/Re. For reasons to be discussed later, the viscous term in the
linear momentum balance of the fluid will be retained.

In view of the kinematic relationships v, =w;+q — (¢yu; +---+ ¢yuy) for i=1,...,N and v; =

— (¢pyu; + - - - + ¢pyuy), which follow from the definitions of the slip velocities and of q, the reduced non-
dimensional linear momentum balance equations can be written as

o (D) = 0] ¢, (k — F ()’ )+29¢>wa><( P a (P £+ )

+V*<% Z(¢)>+¢,-Vp*, i=1,...,N, (2.17)
V= ko F ()~ o O e+ R (0u) + g V(T
o F e x (q— (ou} +--- + Pyuy)). (2.18)

Ro

Inserting (2.18) into each of Egs. (2.17) and discarding the unique small term according to the previous
considerations, namely the viscous term, we obtain after simplifications

2 (@) = gyl — D)k — F (V) + 24,0 amxu+v(ﬂfw0

d) [
~1 q_si(b (o0 (@)u} + - -+ + oy (Puy), i=1,...,N. (2.19)
We are now interested in those limiting cases for which (2.19) produces an easily solvable linear system for
the slip velocities uj, . . . ,u},. One simple case occurs when @ = 0 and thus % = 0, which corresponds to the

gravity settling model studied by Berres et al. (2003a). On the other hand, if we wish to include centrifu-
gation, then for moderate angular velocities the ratio Fr/Ro still remains small and admits neglecting the
Coriolis terms. For example, consider the range 100 rad/s < wg < 1000 rad/s, which corresponds to about
1000-10 000 rpm, and R = Ly = 0.1 m. We then have Fr/Ro = 10~ and .# = 100 for wy = 100 rad/s and
Fr/Ro=10"* and # = 10000 for w, = 10000 rad/s. This illustrates that neglecting both gravity and
Coriolis terms still produces a reasonable approximation for a centrifugal system within a certain range of
angular velocities. We thus assume that Fr/Ro is small and delete the corresponding terms from (2.19).
Switching back to dimensional variables, we obtain

o;(P)u; + 1 <Z_5,-¢ (01 (P)uy + -+ + oy (P)uy) = ¢, (2.20)
— b o
¢ = ¢;(0; — 0f)(gk — 0’r) + V gae(q’)) , i=1,...,N.
This linear system of equations for uy, . .., uy can be solved explicitly by the Sherman—Morrison formula,

which states that for a matrix B of the type B = D + xy', where D is an invertible diagonal matrix and x
and y are given vectors, its inverse B~! is given by
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1

B'=D+xy")'=D'—-———— D 'xy'D".
( v) 1+y™D 'x y
In our case, we get the following solution of the system (2.20):
d: .
= i . 4. , i=1,...,N. 221
u O(l((p)(l _d)) (C (d)lcl +¢NCN)) l ( )

We consider here the Masliyah—Lockett-Bassoon model (MLB) (Masliyah, 1979; Lockett and Bassoon,
1979), whose decisive specific assumption states that there exists a function V(¢), the ‘hindered settling
factor’, such that ¢,/o;(®) = —d?V (¢)/(18u;) fori = 1,..., N, where p is the dynamic viscosity of the pure
fluid. A very common example due to Richardson and Zaki (1954) is

1—¢)" n>2 for0<¢<1

v(g) =1 ) ) 2.2
(4) {0 otherwise. (222)
Introducing the reduced densities g, := ¢, — ¢, i = 1,...,N, the vector g := (g,,...,@y)" and the para-

meters u := —gd?/(18y,) and 6, := d?/d} for i = 1,..., N, we finally obtain the explicit equations for the
slip velocities

2 _
u; = po; V() |:(Ql- —0'9) (k — w—r) + oe(9) V(ﬂ> +MV63(¢)], i=1,...,N. (2.23)
g b, ¢ ¢
In view of (2.3), the fluxes ¢,vy, ..., ¢,Vy appearing in the solids continuity equations can be written as
2
oy = f[M(P) (k —%r) +¢q—a,(®, VD), i=1,...,N, (2.24)
where, defining & := (dy, .. ., 5N)T, we have

@) =1V ()¢ [5;(@ —0'®) - > augi(a— '), (2.25)

a(0.v) = LN Q=005 51010 9) + oo (a9 (%) -0 a9 (L) )|
g ¢ ¢ k=1 ¢
i=1,...,N. (2.26)
Thus, the field equations that have to be solved in several space dimensions are
%—FV-{(blq—i—ﬁM((I))(k—gr)}:V-ai(cb,Vdi), i=1,...,N, (2.27)
V-q=0, (2.28)
Vp = =V (¢) + o(®)(—gk + w’r) + %d)v -TF. (2.29)

We are interested in simple spatially one-dimensional cases in which only the system of convection—
diffusion equation (2.27) rather than the full coupled system (2.27)—(2.29) has to be solved. The obvious
cases are gravity settling in a closed column and batch centrifugation in a tube or basket centrifuge
neglecting the effect of gravity. This case has been studied only for monodisperse flocculated suspensions so
far (Blirger and Concha, 2001).
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2.6. Gravity settling in a closed column

We set w = 0 and assume that all variables depend on height z, taken in the positive direction of the
vector k only. Then (2.28) turns into 0¢/0z = 0 and thus ¢ = 0 in view of the closed bottom boundary
condition. The only system that remains to be solved can be written as

op ofM(®) o 0P
> % T (A(d))@z)’ (2.30)
where the entries of the diffusion matrix A(®) = (n,(®)), .,y are given by
4 / i .
@) = =2 (1~ 4101~ 5T 0)0u0) + |00, - 06~ L0~ 57| o) |, 1<,
(2.31)

and we use the standard notation é;; = 1 if i = j and J;; = 0 otherwise. For batch settling of a suspension in
a closed column of height L, Eq. (2.30) is equipped with the initial condition

?(z,0)=d2), 0<z<L, @ ()€, (2.32)
and the zero-flux boundary conditions
Rl
() —A((D)a—:O forz=0and z= L. (2.33)
z

2.7. Batch centrifugation in a tube or basket centrifuge

We consider a moderate angular velocity @ for which both gravitational and Coriolis effects can be
neglected, as discussed above. Then we may consider solutions that depend on the radius » as the unique
space variable. Moreover, we introduce a parameter ¢ taking the value ¢ = 0 for a rotating tube and o = 1
for a rotating basket centrifuge. In both cases it follows again that ¢ = 0, and the system of equations that
remains to be solved is

3 10 ( @ em 10 o
— = ——r (D)) = — — | F"A(D) — ). 2.34

at+r”6r< gr ( )) r“@r(r ( )@r> ( )
We assume that the radius r varies between an inner radius R; > 0 and an outer radius R, > R;. We then
obtain the boundary conditions (analogous to (2.33))

2
(0]
—%fM(di) — A((D)% =0 forr, € {Ro,R;}, (2.35)
r r=ry
and the initial condition
o(r,0)=(r), R<r<R, (r)eg, . (2.36)

3. Type analysis

We now summarize the main aspects of the type analysis by looking first at the gravity system (2.30). To
this end, we consider first a suspension of rigid spheres forming incompressible sediments, such that g, = 0.
Under this assumption, (2.30) reduces to the system of first-order conservation laws
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od  ofM(d)
—+——==0. 3.1
ot e (3.)
It is well known that solutions of (3.1) are discontinuous in general, and that the propagation speed
o:(®", @) of a discontinuity in the concentration field ¢, separating the states @ and @~ is given by the
Rankine-Hugoniot condition

IAICOESAICS

’ o o
We recall that a system of conservation laws (3.1) is called Zhyperbolic if the eigenvalues of the Jacobian
I (@) = (0fi/0py)| <, < are real, and strictly hyperbolic if these are moreover pairwise distinct. For
N =2, a system with a pair of complex conjugate eigenvalues is called elliptic. Some of the flux-density
vectors f(@) proposed in the literature cause the system (3.1) to be non-hyperbolic. In the special case
N = 2, this means that the system is of mixed hyperbolic—elliptic type. The loss of hyperbolicity depends on
the size and density parameters, and the type is mixed if for given sizes and densities, the system is non-
hyperbolic (or elliptic) for @ € E C @%mux, where

P = {PERY >0, by >0, $= ot by < D)

where it is assumed that V' (¢) = 0 for ¢ = ¢,,..» and Ejgmax \ E is non-empty.

The ellipticity criterion is equivalent to the criterion for the occurrence of instabilities like blobs and
viscous fingering (Fig. 2) introduced by Batchelor and Janse van Rensburg (1986), see Weiland et al. (1984)
for pertinent experimental findings. By a perturbation analysis, Blirger et al. (2002) show that loss of hy-
perbolicity, that is the occurrence of at least one pair of complex conjugate eigenvalues of #,(®) for vectors
& belonging to some non-empty subset £ C &4, provides an instability criterion for polydisperse sus-
pensions of arbitrary numbers of species N. For N = 3, this criterion can still be evaluated conveniently by
calculating the discriminant

L(®) :=4s® — s + 27 + 4r°t — 18rst

i=1,...,N.

of the (signed) characteristic polynomial
pi(2; @) = —det( F(®) — M) = 2>+ r)> +5)+1,
where the coefficients » = r(®), s = s(®) and ¢ = #(P) are given by
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Fig. 2. Separation of a bidisperse suspension of heavy (¢; > ¢;; ®) and buoyant (¢, < ¢;; O) particles: (a) stable demixing with hori-
zontal interfaces at low initial concentrations, (b) unstable separation with formation of ‘fingers’ and ‘blobs’ at higher concentrations.
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The model equations are unstable at ® € &, _ , that is, they are non-hyperbolic, when the equation
p3(4; @) = 0 has a pair of complex conjugate solutions, which occurs if and only if /3 > 0. This also handles
the bidisperse case. In fact, setting I, := —5(¢;, ¢,,0), we get I, = —s*(* — 45)/108; and Batchelor and
Janse van Rensburg’s (1986) well-known instability criterion for bidisperse suspensions just states that
instabilities occur if

: 4<6f1 6/‘2)24(51’1 of o aﬁ)(@fl @fz>2+4af1%<0

=50 Mg, 34 06, 00, 00,)  \3g, 0p,) T op, 00, =

Biirger et al. (2002) determine instability regions (evaluating numerically /5) for three different choices of
f(®). For the MLB model and a suspension with two particle species differing in size only, such instability
regions are shown in Fig. 3. One of the predictions of the diagrams of Fig. 3 is that if we consider a bi-
disperse suspension with initial concentrations (d)?, qﬁg) chosen from the interior of the instability region,
then this suspension will separate unstably according to Fig. 2(b); otherwise, it will separate stably under
formation of stable horizontal interfaces as in Fig. 2(a). Observe that the instability regions for y close to
one in the left diagram of Fig. 3 are located near the line ¢ = 1. This means that for bidisperse suspensions
of equal-sized heavy particles that differ only slightly in density, hyperbolicity can be recovered by cutting
the hindered settling factor ¥(¢) at a suitable maximum concentration ¢,,,,, such that the instability region
is contained in &, \ %4 and thus is irrelevant for computations. For the Richardson-Zaki hindered
settling factor (2.22) this means that one utilizes

V(d)):{(lqﬁ)”z, n>2 for0< ¢ < P

0 otherwise

instead of (2.22). For example, in the case y = 0.3 we may choose ¢
value).

= 0.7 (or, of course, any smaller

max

0.4

0.3
I, < 0 (unstable)
02

0.1} L
I, >0 I, >0

0 01 02 03 04 05 06 07 08 09 1
$1[-]

Fig. 3. Instability regions of the MLB model for N = 2 with V(¢) = (1 — ¢)*® and particles of the same size (d; = d») and indicated
relative density ratios y := g,/g, (Biirger et al., 2002). The left and right diagrams correspond to bidisperse suspensions with two heavy
and one heavy and one buoyant (creaming) particle species, and include the instability region for the common limiting case y = 0.
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Fig. 6 of Batchelor and Janse van Rensburg (1986) shows good agreement of experimentally observed
instability regions (in the phase plane) with those obtained algebraically, as those shown in our Fig. 3.

An interesting subcase is that of polydisperse suspensions of equal-density particles, usually made from
the same material, which differ only in size. Biesheuvel et al. (2001) consider bidisperse (N = 2) suspensions
with particles differing in both size and density and determine instability regions for the MLB model and
the (more involved) model by Patwardhan and Tien (1985). They provide a long list of references (not
repeated here) of experimental studies which indicate that instability phenomena have never been observed
with equal-density (i.e., o; = - -- = g,) polydisperse suspensions. Biesheuvel et al. (2001) conjecture (but are
not able to prove) that this equal-density case always leads to stable separations. In our mathematical
terminology, this means that the equations should always be hyperbolic, but Biesheuvel et al. (2001) do not
appeal to the instability criterion as a property of the type of the model equations. For N = 2 and the case
0, = 0,, Biirger et al. (2002) prove algebraically by evaluating /, with the partial derivatives dfM(®)/d¢,,
i,k = 1,2 generated from the MLB model, that this conjecture is indeed true, which means that in this
special case the model equations are always hyperbolic. More recently, Berres et al. (2003a) extend this
result to any number of particle species N. In fact, by evaluating the characteristic polynomial
p(4; @) = det(Fm(P) — AI) they prove that for equal-density particles (¢ = --- = gy = 9, — ¢¢), arbitrary N
and particle size distributions, the system (3.1) is strictly hyperbolic for all ® € & with ¢, > 0,...,¢y >0
and ¢ < 1 if the flux vector (2.25) is chosen. The results of the type analysis of the first-order system (3.1)
are also reported in Biirger (2002a,b).

Next, we include the compression effect and consider the full equations (2.30). We recall here that the
assumption g, = g.(¢) used in the construction of the matrix A(®) is very unlikely to hold if the particles
differ in density, that is, differ in material, so we consider the compression effect given by the terms on the
right-hand part of (2.30) only in combination with equal-density particles.

In view of the generic assumptions on a.(¢) (2.8), we can read off from (2.31) that the system (2.30) is
degenerate, i.e. changes from second to first order, since A(®) = 0 wherever ¢ < ¢,, and we recall that for
¢ < ¢, and equal-density particles, the system (2.30) is strictly hyperbolic. Moreover, (2.30) has the non-
obvious property of being parabolic for ¢, < ¢ < 1, which means that A(®) has N real, positive eigen-
values. This is proved by Berres et al. (2003a) by exploiting the similar properties of the characteristic
polynomials of the Jacobian of the convective flux #}(®) and of the diffusion matrix A(®). Furthermore, it
turns out that the eigenvalues of A(®) are pairwise distinct and bounded.

It can be easily checked that for a given vector @ € %,,,,, the type of the ‘centrifugal’ system of equations
(2.34) is the same as that of the analogous ‘gravity’ system (2.30) (with the same particle properties and
model functions V(¢) and o.(¢) chosen), and that the type does not depend on w or r. To see this, we
rewrite (2.34) in non-conservative form as

0P o’ c oP 0 0P o’ M
wn + ( - Er/fM@) — ;A((D)) it (A((P)E> —i—;(l + o)t (D). (3.2)
If @ is chosen such that ¢, < ¢ < 1, then the type of (3.2) is determined by the diffusion term, that is the
first term on the right-hand part of (3.2). This term is identical to that appearing in (2.30), except for z being
replaced by r. On the other hand, for 0 < ¢ < ¢, (3.2) reduces to

0o 2 0P 2
o @G = (o). (3.3)

It is obvious that the relevant Jacobian of (3.3), which determines the type of these equations, is just that of
the first-order ‘gravity’ equation (3.1), #}'(®), multiplied by —w?’r/g. Note that we consider » > R; > 0.
Thus, (3.3) is hyperbolic if and only if (3.1) is.

Considering the full range 0 < ¢ < ¢,,,,, We can in particular conclude that for equal-density spheres,
both the ‘gravity’ system (2.30) and the ‘centrifugal’ system (2.34) provide examples of a strongly degenerate
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parabolic-hyperbolic system of partial differential equations. It should, however, be mentioned that in-
stability phenomena such as those depicted in Fig. 2 have not been recorded for centrifugal systems.

The type properties discussed in this section are not only theoretically interesting but are useful when it
comes to numerical simulation. In fact, the properties of both matrices can be utilized to control the nu-
merical diffusion of the numerical scheme by Kurganov and Tadmor (2000) applied to (2.30).

4. Numerical method
We consider the computational domain Qr := [R;, Ry] X [0, T] and introduce a rectangular grid by setting

r; := Ri + jAr, where J is an even integer and Ar := (R, — R;)/J denotes the width of a half-cell. Moreover,
let ¢, :=nAt, n=0,1,2,..., 4", where At:=T/.A", and /" is an integer, and 1 := A¢/(2Ar). The (ap-

proximate) cell average of ¢;, i = 1,..., N, with respect to the cell [r;,7122], j = 0,2,4,...,J — 2, at time ¢, is
denoted by (f;Zj, j=1,3,...,J — 1, and we define the approximate cell-average vector @7 = ( _’l’,j, cey qgj’v,j)T
forj=1,3,...,J—1land n=0,1,... 4.
To outline the scheme, assume that at time z=1¢,, n=0,1,...,.4/ — 1, the vector @’; has either been
calculated from the previous time step (for » > 1) or is given by the discretization of the initial condition,
Tj+1
¢ L CPls)ds, j=1,3,....J—1,i=1,...,N.

1

YT Ar ),

For the interior cells, we obtain the explicit update formula

2;«
— — WA )\.
n+l __ gn I+opn  _ l+opn A P T ] P _
¢j - ¢j + g (rj+1 j+1 rj—l hj—l) + 70 (rj+1pj+1 Vj,lpj,1)7 J = 3, 57 R4 3,
J J

n=01,..., 4/ —1. 4.1)

Eq. (4.1) is the discrete analogue of the ‘centrifugal’ field equation (2.34), where h7,; and pj,, are ap-
proximations of the ‘hyperbolic’ and ‘parabolic’ fluxes f* and a, respectively, through the boundaries of the
cell [r;_1,7;41] at time #,. The detailed computation of the numerical fluxes follows precisely that of the
gravitational case described in detail in Section 6.2 of Berres et al. (2003a) (with the obvious modification of
replacing z” by 7’), and is therefore not repeated here.

While the interior scheme (4.1) approximates the field equation (2.34), the corresponding boundary

conditions (2.35) prescribed at » = R; and r = R, are discretized by setting

2Ri ZRO
SO gm0, —C e =0, a=0,1,...,4 1. (4.2)
Inserting this into (4.1), where we set j = 1 and j = —1, we obtain the following update formulas for the
boundary cells (boundary scheme):
_ _ 2) A
& — @ ‘:fr;*“hg A =01 (4.3)
1 1
FHn+1 Y wz)‘ 1+oy,n l i n
=9 | ———r 5, ———rp),, n=0,1,...,. 4 -1 (4.4)
J-18 Ty

A necessary condition for the scheme to converge is that the CFL stability condition is satisfied, which
limits the mesh size ratio 4 = At/Ar for the explicit scheme considered here. The extension of the CFL
condition stated by Kurganov and Tadmor to the present strongly degenerate parabolic—hyperbolic system
reads
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Fig. 4. Numerical simulation of batch centrifugation of a bidisperse suspension with particles differing in size and density.
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5. Numerical examples
5.1. Centrifugation of a bidisperse suspension of rigid particles

Biesheuvel and Verweij (2000) consider batch centrifugal sedimentation as a procedure for manufac-
turing functionally graded materials. They consider a bidisperse suspension of zirconia (ZrO,) and alumina
(Al,03) particles, which we identify with Species 1 and 2, respectively, dispersed in water, and use experi-
mental information by Chang et al. (1991). According to Table IV of Biesheuvel and Verweij (2000), the
particles have the parameters d; = 3.0 x 1077 m, d> = 2.0 x 1077 m, ¢, = 6050 kg/m?>, ¢, = 3940 kg/m?3,

(a) e | (b)
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Fig. 5. Numerical simulation of the centrifugation of a tridisperse suspension forming compressible sediment in a basket centrifuge
(6 =1) at ® = w; = 25.573 rad/s, showing (a—c) the concentrations of the individual species and (d) the cumulative concentration ¢.
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while those of the liquid are, as before, o; = 1000 kg/m* and u; = 1073 Pas. The initial concentration of the
mixture considered is qb‘l) =0.06 and ¢3 = 0.14, and a tube centrifuge (¢ = 0) is considered with the radii
R; =0.1016 m and R, = 0.1524 m. The centrifuge is operated at the scalar angular velocity w = 354 rad/s,
which produces a centrifugal acceleration of w?R = 1946.8¢g at the outer radius. Biesheuvel and Verweij
(2000) indicate that the hindered settling function (2.22) with n = 4.65 is appropriate, and consider a
‘packing factor’ of 0.573, which we consider as a maximum concentration ¢,,,, at which the hindered
settling factor V' (¢) is cut.

We verified by evaluating the discriminant /, numerically at a sufficiently dense set of points
(1, 0,) € 98573 that the MLB model with these parameters is indeed strictly hyperbolic, although the
system considered here involves particles of different sizes and different densities, for which this property
usually does not hold. The numerical simulations were made by considering R; = 0.1 m, R, = 0.15 m,
J =1000 and 2 =1 s/m. The numerical result is shown in Fig. 4 as three-dimensional plots of the con-
centrations as functions of radius r and time ¢ and as settling plots. The solution shows that the bulk
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Fig. 6. Numerical simulation of the centrifugation of a tridisperse suspension forming compressible sediment in a basket centrifuge at
w = w; = 25.573 rad/s, showing (a—c) iso-concentration lines of the individual species and (d) of the cumulative concentration ¢. These
plots correspond to the results shown in Fig. 5.



S. Berres, R. Biirger | International Journal of Solids and Structures 40 (2003) 4965-4987

4981

suspension, in which the concentration of both species decreases with time, is separated from the clear
supernatant liquid by two curved concentration discontinuities, which form a sector in which the sus-
pension consists of the smaller particles only. Fig. 4(d) shows that the concentration ¢, of the smaller
species in this sector is larger than in the bulk suspension zone underneath, and for small times even larger
than the initial concentration. This ‘enrichment’ of the smaller particles also appears in simulations of the
gravity settling case (Biirger et al., 2001; Xue and Sun, 2003), was noted first by Smith (1966), and is
therefore sometimes called Smith effect.

The sediments are assumed here to be incompressible, and turn out to be composed of two layers: an
outer layer in which both particles are present at slightly varying concentrations, which accurately add up
to the maximum concentration 0.573, and an inner layer where only the second (smaller) species is present,
and also assumes the maximum concentration.
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Fig. 7. Numerical simulation of the centrifugation of a tridisperse suspension forming compressible sediment in a tube centrifuge
(6 =0) at = w; = 25.573 rad/s, showing (a—c) iso-concentration lines of the individual species and (d) of the cumulative concen-

tration ¢.
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5.2. Centrifugation of a tridisperse suspension forming compressible sediments

We consider a tridisperse (N = 3) suspension forming compressible sediments. This physical properties
of the mixture are the same as in Berres et al. (2003a), and are given by the model function (2.9) for a.(¢)
with the parameters gy = 180 Pa, ¢, = 0.2 and k£ = 6, and by the hindered settling factor (2.22) with
n = 4.7. The remaining parameters are y, = 1073 Pas, d; = 1.19 x 10 m, d, = V0.5d,, d; = 0.5d, (such
that 6 = (1,0.5,0.25)T), 0, = 1800 kg/m* and g = 9.81 m/s>. We consider here both a tube (¢ = 0) and a
basket (¢ = 1) centrifuge, where the inner and outer radii are chosen as R; = 0.05 m and R, = 0.15 m, such
that the effective sedimenting space is R, — R; = 0.1 m. The angular velocity is first chosen as w; = 25.573
rad/s, such that w’R, = 10g. To study the effect of increase of the radial velocity on the composition of the
sediment, we consider in addition the same centrifuge as a basket centrifuge (¢ = 1), operated at the angular
velocities w, = v 10w, and w; = 10w, such that the centrifugal acceleration at the outer radius is increased
twice by a factor of ten. In all cases, we choose the initial concentrations @° = (0.04,0.04,0.04), as in Berres
et al. (2003a).
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Fig. 8. Numerical simulation of the centrifugation of a tridisperse suspension forming compressible sediment in a basket centrifuge at
o = w, = 80.869 rad/s, showing (a—c) iso-concentration lines of the individual species and (d) of the cumulative concentration ¢.
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In our simulations, we use the parameters J = 1000 and 1 =8.0 x 10* s/m, 8.0 x 107 s/m and
8.0 x 107 s/m for w = w,, w, and w;, respectively. Fig. 5 shows the numerical results for o = w; and ¢ = 1
as three-dimensional plots. Note that the grid used in the visual representation of these results is much
coarser than the computational grid defined by the parameter Ar that was actually used for the compu-
tations. More accurate information is given by the plots of Fig. 6. We observe three curved discontinuities
forming (from inner to outer positions) a clear supernatant liquid zone, a zone containing only the smallest
species, a zone containing the smallest and intermediate species, and a zone in which all species are present.
As for monodisperse suspensions (Anestis, 1981; Anestis and Schneider, 1983; Lueptow and Hiibler, 1991;
Biirger and Concha, 2001) and unlike the gravity case for polydisperse mixtures (Biirger et al., 2000a, 2001),
concentrations are not constant in these zones but vary as functions of time. From the ‘bottom’, that is,
from the outer wall of the basket centrifuge, the sediment is growing.

The plot showing the isolines of the cumulative solids concentration ¢, Fig. 6(d) shows for ¢ fixed that
this concentration consistently increases from the suspension-sediment interface, where ¢ = ¢, towards the
outer wall, and that the maximum concentration reached at the outer wall increases in time, which becomes
apparent by the successive appearance from the outer radius of the iso-concentration lines for ¢ = 0.22,
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Fig. 9. Numerical simulation of the centrifugation of a tridisperse suspension forming compressible sediment in a basket centrifuge at
o = w3 = 255.73 rad/s, showing (a—c) iso-concentration lines of the individual species and (d) of the cumulative concentration ¢.
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0.24, 0.26 and 0.28. This behaviour is similar to the simulations shown by Biirger and Concha (2001) for
monodisperse suspensions. The interesting parts of the solution are the iso-concentration lines of the
concentrations ¢, to ¢ of the individual species. We observe in Fig. 6(a) and (b) that the concentrations of
¢, and ¢, increase near the bottom and then decrease again (as a function of time), and Figs. 5(d) and 6(d)
indicate that the smallest species first form a thin layer with relatively high concentration at the top of the
sediment before an equilibrium concentration is assumed. The numerical results indicate that the final
concentration of each species at steady state is at a given height is one third of the cumulative solids
concentration ¢.

Fig. 7 refers to the same parameters as the example shown in Figs. 5 and 6 except that we here consider a
rotating tube (¢ = 0). The solution picture is very similar to that of Fig. 6, but the final concentrations
attained at the outer wall are substantially higher than in the basket centrifuge case (¢ = 1).

Figs. 8 and 9 again refer to the basket centrifuge (¢ = 1) considered in Figs. 5 and 6, but at the increased
radial velocities w, = v/10w; and w; = 10w,. Since the final time has been decreased by the factors 10 and
100 in Figs. 8 and 9, respectively, against that of Figs. 5 and 6, the solution pictures in the hindered settling
zone (where ¢ < ¢, look very much the same. However, Figs. 8 and 9 illustrate that increasing the angular
velocity increases the concentrations in the sediment near the outer wall, and decreases the thickness of the
sediment, as expected.

6. Discussion

The mathematical model presented herein allows for describing both the hindered settling and the
consolidation of suspensions with particles of different sizes and densities by one system of field equations.
Thus it is unnecessary to explicitly track the suspension-sediment interface. It has been shown that modern
shock-capturing schemes for systems of conservation laws can be employed to simulate centrifugal sedi-
mentation—consolidation processes of flocculated suspensions. In particular, these schemes accurately re-
solve concentration discontinuities, reproduce them at the right position, and also include discretizations of
the diffusion terms describing sediment compressibility.

The present paper provides the common mathematical framework for recent analyses of gravity settling
of polydisperse mixtures, including the authors’ papers and, for example, Xue and Sun (2003), and of
theoretical and experimental studies of centrifugal separation processes by Demeler et al. (1997); Biesheuvel
et al. (1998), Biesheuvel and Verweij (2000), Lerche and Fromer (2001), Fromer and Lerche (2002) and
Diick and NeeBe (2002). However, in the centrifugal case some limitations of the applicability of the model
herein have to be taken into account. One of them is the range of angular velocities discussed in Section 2.5.
In fact, for very high values of w the Coriolis effect will add significant azimuthal components to the particle
phase velocities, and neglecting the Coriolis terms will then lead to under-predictions of the sedimentation
time. In the monodisperse case, this effect has become visible in Fig. 7 of Biirger and Concha (2001). A
related limitation becomes apparent for long tube centrifuges (¢ = 0) and for basket centrifuges with
compartment walls. In these cases the solid particles do not only settle onto the outer (radial) wall but also
on the side walls of the tube or onto compartment walls. Obviously, it is then no longer sufficient to
consider one space dimension. Extended analyses of mono- and bidisperse sedimentation including these
cases are provided by Greenspan and Ungarish (1985), Schaflinger et al. (1986), Schaflinger (1987),
Schaflinger and Stibi (1987) and Ungarish (1993, 1995, 2001). Let us mention that these treatments do not
lead to easily solvable models describing the complete separation process. Moreover, most available ex-
perimental information the model could be compared with (i.e., which provides concentration profiles) is
related to the gravity case, and there are currently only a few reliable records of sediment-suspension and
suspension-supernate interfaces in the centrifugal case (Sambuichi et al., 1991; Eckert et al., 1996; Garrido
et al., 2001).
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Finally, we mention that the mathematical analysis of strongly degenerate parabolic-hyperbolic equa-
tions and systems such as (2.30) is an ongoing research topic with still many unresolved problems. In fact,
only for the scalar case (N = 1) it is ensured that the sedimentation—consolidation model stated here is well-
posed, which means that a solution exists, is unique, and continuously depends on the initial data, see
Biirger and Karlsen (2001). For this case it is also possible to prove convergence of a numerical scheme. For
N =2, a closed well-posedness theory even for the special subcase (3.1) (let alone for the system (2.30)) is
not available. Thus, rigorous convergence analyses of numerical schemes for such equations are feasible
only in the scalar case. High-resolution shock-capturing schemes appear to be a powerful tool for the
simulation of the dynamics of polydisperse suspensions, but it should clearly be pointed out that the
recommendation of their use for the present class of problems is essentially based on numerical experi-
mentation. It should also be mentioned that it is at present unclear under which conditions these schemes
will produce meaningful solutions also in the first-order hyperbolic—elliptic (for N = 2) or non-hyperbolic
mixed type cases discussed in Section 3.
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